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AbslmcL There is a lopological ~ t ruc ture  in the set of the eleclromagnelic radialion 
fields (with E .  B = 0 )  in vacuum. A subset of thcm, called here thc odmkible Pld.5. 
are associated with maps S3 - S2 and can be classified in homotopy classs labelled 
by Ihe value of lhe corresponding Hopf indexes, which are topological constants of the 
malion. Moreover, any radialion field can be oblained by patching together admissible 
fields and is therefore locally equal to one of them. There is, however, an imporlant 
difference from the global p i n t  of view, Since lhe admissible fields obey lhe topological 
quantum conditions that the magnetic and the electric helicitis are equal 10 inleger 
numbem n and m limes an action conslant n which must be introduced because of 
dimensional reasons. that is J A . B d 3 r  = ne, JC.Ed3r = ma, where B a n d  E are 
the magnelic and electric fields and V Y A = B ,  V x C = E. A topological mechanism 
for the quanlization of the electric charge operates in the set of the admissible fields, 
in such a way that the eleclric flux through any closed surface around a point charge is 
always equal to J;; limes an integer number n', equal to the degree of a map S2 - Sz, 
corresponding to the existence of a fundamental charge wilh value qo = &/4r.  11 is 
argued that results of this kind could help reaching a better undemanding of quantum 
physics. 

1. Introduction 

There is little doubt that topology will in future play a major role in quantum physics. 
As Atiyah (1990) puts it, this is not surprising, since 'both topology and quantum 
physics go from the continuous to the discrete'. Tbpological ideas were already used 
in the study of the structure of matter more than a century ago by Lord Kelvin, 
who imagined in 1868 that the atoms could be knots or links of the vorticity lines of 
the aether, to which he applied the then new Helmholtz theorems on fluid dynamics 
(Kelvin 1868, Tait 1911, Archibald 1989). He understood, in a remarkable combina- 
tion of geometrical insight and physical intuition, that such knots and links would be 
extremely stable, just as matter is. Furthermore, the many different ways in which 
curves can be linked or knotted offered an explanation for the remarkable variety of 
the properties of the chemical elements. From our modern perspective, we can add 
to stability and variety two other very important qualities of matter which were not 
known in Kelvin's time. One is transmutability, the ability of atoms to change into 
others of a different kind as an effect of nuclear reactions, which could be related 
to the breaking and reconnections of vorticity lines (as happens, for instance, to the 
magnetic lines in tokamaks during disruptions). The second is the discrete energy 
spectrum, which is also a characteristic of the non-trivial topological configurations 
of vector fields, as has been proved by Moffatt (1990a), making use of a theorem by 
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Freedman (1988). At the time, Kelvin’s model had a good reception, being praised, 
for instance, by Maxwell. But neither topology nor atomic phenomenology were suf- 
ficiently developed to follow his very deep insight, which explains why it was later 
forgotten and remained unknown for a very long time. 

?bpology was also at the basis of one of Dirac’s (1931) most appealing and intrigu- 
ing proposals, the monopole, which embodied a mechanism for the quantization of 
the electric charge, an idea developed later in other contexts (Polyakov 1974, ’t Hooft 
1974). Since Aharonov and Bohm (1959) discovered the effect that bears their name, 
it has been known that the description of the electromagnetic field requires topo- 
logical considerations. The sine-Gordon equation offers the simplest model with a 
conservation law of topological origin, based on the degree of a map S’ c S’ of 
the circle on itself. Its extension to three dimensions allowed Skyrme (l%l, 1988) 
to build a model with topological solitons and conserved current, the corresponding 
quantity taking only integer values equal to the degree of a map S3 H S3 between 
three-dimensional spheres. As Skyrme explained he had three motives for proposing 
such a model: unification; renormalization; and what he called the fermion problem. 
His skyrmion, as his basic soliton became known, would be a fundamental boson from 
which he hoped to build all the particles and, because a topological theory must be 
nonlinear, the possibility of removing the infinities seemed a real and attainable aim. 

In the past, the applications of topology to field theory concentrated on knots 
and links (Atiyah 1990), the classification of which had been attempted by Tait (1911) 
after discussions with Kelvin concerning his atomic models. He was then able to pose 
the problem and to formulate some conjectures. However, in spite of its interest and 
beauty, this branch of mathematics fell into oblivion for several decades, until the 
discovery in 1928 of the Alexander polynomials, which are invariants associated with 
each knot or link. In 1984, Jones found another set of polynomials, which were found 
to be very useful for classifying knots or links, which allowed proof of some of ’hit’s 
conjectures. Although these developments arose from pure mathematics, they turned 
out to be related to Yang-Mills field theory, a very important physical application 
being the construction of a topological quantum field theory, as proposed by Witten 
(1988, 1989), which may open the way to a deeper understanding of quantum physics. 

It will be shown in this paper that the set of the radiation solutions of Maxwell 
equations in vacuum (those which verify E .  E = 0) has a subset, called here the 
admirsible fields with a curious topological structure shown in the links formed by 
pairs of field strength lines. Any pair of maps 4, 0 : S3 c Sz (with orthogonal level 
curves) is associated with an admissible electromagnetic field, such that the magnetic 
and electric lines are the level curves of 4 and 0, respectively. As a consequence, 
the linking numbers of any pair of magnetic lines and of any pair of electric l i es  are 
two topological constants of the motion, taking only integer values n and m, equal 
to the Hopf index of the corresponding maps. Moreover, they are also equal to the 
magneticand electrichelicities S A . B d 3 v  = n, S C . E d 3 r =  m, w h e r e V x A  = E, 
V x C = E. (In natural units, otherwise the helicities would be equal to na and 
ma respectively, a being an action constant which should be introduced because 
of dimensional reasons.) The admissible fields can thus be classified in homotopy 
classes labelled by the integer values of both helicities. The potential importance 
of this property rests on the fact that any standard electromagnetic radiation field 
is locally equal to an admissible one, except in a set of zero measure, and can be 
obtained by patching together several admissible fields. This can be expressed by 
saying that the difference between the set of admissible fields and that of all the 
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solutions of Maxwell equations in vacuum, verifying E .  B = 0 ,  is not local but 
global. 

In a model based on the admissible fields, the electric charge is quantized S i n c e  
that of a point particle is neccesarily an integer multiple of the fundamental Value 
1/4n (in physical units 4/4n). The topological ground for this property is that, in 
this model, the flux through a sphere which encloses a charge is equal to the degree 
of a map Sz c S2 between two spheres which is always an integer number. 

The plan of the paper is as follows. The theory of the Hop€ index is summarized 
in section 2. In section 3, the set of admissible fields is described and a model based 
on them is presented. Section 4 is devoted to the relation between the set of all the 
solutions of Maxwell equations in vacuum and the subset of the admissible fields. In 
section 5, the quantization of the helicity is considered, as well as the relation between 
the magnetic helicity and the projection of the spin on the direction of motion. In  
section 6, the topological mechanism for the quantization of the electric charge is 
presented. Finally, in section 7, the results are summarized. 

2. The Hopf index 

Let us consider a scalar field + ( r )  with the property that its value at infinity is well 
defined, which means that its limit when r - m does not depend on the direction. 
In that case, it can be interpreted as a map q5 : S3 Y Sz, after identifying, via 
stereographic projection, R3 U {CO) with the sphere S3 and the complete complex 
plane C U {m) with the sphere Sz. 

These identifications can be realized in the following way. A point P in S2 
can be represented by: (i) the artesian nk, such that n2 = E n :  = 1; or (ii) 
the spherical 9,p, related to nk by n3 = cos9 ,  n, + in ,  = s i n 9  exp(irp). Its 
stereographic projection is the complex number 6 = cot(d/2)exp(iip),  which will 
be taken in this work as the coordinate of P in Sz. On the other hand, the artesian 
u l , .  . . , u4 with the condition U: = 1 can be taken as coordinates of a point 
Q in S3. Their relations with the artesian x k ,  k = 1 , 2 , 3  of the stereographic 
projection on the three.-space u., = 0 are zk = uk/(l - u4),uk = Zzk/(l + r2),  
r 2 = ~ x ~ , k = 1 , 2 , 3 , u q = ( r 2 - l ) / ( r Z + 1 ) .  

This explains why and how a complex function + ( T )  can be interpreted as a map 
S3 c) S2. As maps of this kind can be classified in homotopy classes, labelled by 
a topological invariant called the Hopf index, the same property applies to complex 
scalar fields. 

Given a map f : S3 CI Sz, which for simplicity will be taken to be smooth, the 

two closed curves in S3. Its linking number is defined as the number of intersections 
of any of the two with an oriented surface bounded by the other one. It does not 
depend on the particular pair of points, since by moving continuously from (a, b )  to 
(a',  b') the inverse images can neither untie nor tie further one to the other (since, 
for this to happen, they should have a common point with two different images). 
Furthermore and for the same reason, if the map f evolva continuously in time 
this number must be constant. The set of maps S3 c Sz can thus be classified in 
homotopy classes, each one labelled by an integer number n. This number is called 
the Hopf index (Hopf 1931, Nicole 1978, Bott and Tb 1982, Kundu and Rybakov 
1982, Nash and Sen 1982, Kundu 1982, 1986, Moffatt 1990b). 

I..-_"_ inverse imaor o- nf -_ -.., anv NJo nnintq -....- (1 2nd h of 3 2 ,  $-I( . )  2nd f - l ( b ) ,  arc in gel?en! 
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Figure 1. The closed C U N ~  f-'(a) and f - ' ( b ) .  

Let us take the two inverse images of a and b as in figure 1 and let C, be a 
surface bounded by f-'(a), which is noted as ax, = f-'(a). It is clear that the 
number n of intersections of f - ' ( b )  with E,, is equal to the degree of the restriction 
of the map f to C, (because each point of Sz has n inverse images in this surface). 
The degree of such a map is equal to the integral over C, of the area 2-form of 
Sz normalized to unity. This area 2-form, expressed in stereographic coordinates, is 
equal to 

(XI simplify the notation the symbol F is used both for the area 2-form and its 
pull-back to S 3  or R3.) Since 7 is closed in S3 whose second group of cohomology 
is trivial, it must also be exact or, in other words, there exists a 1-form A such that 
F = dA. As was shown in 1947 by Whitehead, the integral of 3 through C, which 
gives the Hopf index can then be written as 

~ = J , . A A F  

The area 2-form being much used in the following, this argument must be presented 
in more detail. The pull-back of this form to R3 by the map + ( r )  can be written as 

1 aipaj+-  ajyai+ 
(3) 

1 I T =  - F . - d z , A d x -  = - dxi  A d z j .  
2 " J 47rl ( l + @ + ) Z  

Like any antisymmetric tensor, Fij can be expressed in terms of a vector B(r) as 

(4) F.. = - e . .  B B k = - f e i .  F.. 
ZJ J k  '1  

and, as it follows easily from (3). it turns out that B is divergenceless (V . B = 0). 
Consequently, the forms 3 and A are expressed in R3 as 

F =  - i e i j k B k d z i A d x j  A = - A i d  xi ( 5 )  

where B = V x A. It  is clear that the vector B, which plays an important role in the 
description of the maps from S3 (or R3) to S2 (or C), is always tangent to the level 
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curves of 4, which are its integral lines. It will be called here fhe Whitehead vector Of 
the map 4 and noted B = W ( 4 ) .  The equations (3)-(5) show that a structure quite 
similar to a magnetic field, or with an electric field in vacuum, is associated to any 
map S3 H S2. The expression (2) of the Hopf index can then be written as 

n = k, A .  B d3r. (6) 

The quantity in the right-hand side of (6) has been used in physics in several cOntextS 
and is called fhe helicify of the vector B .  A discussion of its properties will be 
published elsewhere (Rabada 1992). It was first used by Woltjer (1958) to obtain the 
stable configurations of astrophysical plasmas, A and B being the vector potential 
and the magnetic field. The term helicity was coined by Moffatt (1969) in a paper on 
tangled vorticity lines, with the velocity of a fluid U and its vorticity w = V x U as the 
"CLLULb n all" D \l"i"rLarr I7"7, 1701, 177u", I Y I V l l ' l L L  LIU" .Jll,U"Cl 17N) Y",'. "L." 

Moffatt 1990). Later it was applied to the magnetic relaxation of plasmas in toroidal 
vessels (Taylor 1974, 1986, Pfister and Gekelman 1991). Kuznetsov and Mikhailov 
(1980), following previous work by Faddeev (1976), established the relation between 
mathematics and physics by proving that it can be identified in some cases with the 
Hopf invariant. Its value can also be expressed as 

. ̂__I r. ,.a-=*.. rnrn ,no, lcML -LÎ P.... ..-A m:..̂ L-- I- Pnipr ."A 

h = ny2 (7) 
where n is the linking number, as defined earlier, and y is the total strength of the 
field, that is the sum of the strengths of all the tubes formed by the integral lines of E 
(the magnetic lines, for instance) (Rabada 1992). This means that a non-zero value of 
the helicity is a sure indication of non-trivial topology of the integral lines of a vector 
field. In some situations, as in astrophysics or in toroidal vessel plasmas, the relaxation 
consists in the rapid decreasing of ihe energy to  the minimum-value compatible with 
the consemtion of the magnetic helicity. This property is also important in fluids 
and allows discrete energy spectra to be assigned to configurations characterized by 
non-trivial configurations of vorticity (Moffatt 1990a. Freedmanl988). 

3. A topological model of the electromagnetic radiation fields 

The considerations of the previous section suggest that there is a formal relation 
between the set of maps S 3  H S2 and that of the electromagnetic fields (Rafiada 
1989). It will now be shown that this is indeed the case, to such an extent that a model 
of electromagnetic radiation fields in vacuum can be constructed in which the electric 
and the magnetic fields are the Whitehead vectors of two maps S3 c Sz, given 
by two complex scalar fields d ( ~ )  and O ( T ) ,  their level curves being the magnetic 
and electric lines, respectively. In our notation B = W ( 4 ) ,  E = W(#). These 
scalars will vary in time and, because of evident covariance reasons, it follows from 
(3) that the electromagnetic (or Faraday) tensor F,,, and its dual (or Maxwell) tensor 
M = 1, Fa@ have the value r" 2 ,U,=@ 
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it must be remarked that with this definition the fields E and B are inverse square 
lengths, in full agreement with what we know to be their natural dimensions. If one 
prefers instead to use physical units, a factor 6 should be introduced in (8)-(9), a 
being an action constant which gives the equivalence. between the physical and the 
natural units and which fixes the scale of the topological constant of the motion. 
Moreover .$ must be a scalar and 0 a pseudoscalar. The electric and the magnetic 
fields are then related to (8) and (9) by 

E; = Foi = $ c i j k M j k  B, = - i c L . . F . .  *J *J = M O k .  (10) 

Notice that the corresponding 2-forms dzi A dzj ,  fMij d z j  Adzj  (remember 
that they are equal to the area 2-forms pulled back from the sphere Sa by the maps 
4 and 0, respectively) are the magnetic and electric flu forms, respectively. 

The procedure follows with the Lagrangian density 

L = -a(F,,uF”“ + M,,,M’”) 

submitted to the duality condition or constraint 

(12) 1 ,,U - 0 G a p  = M,B-T%B,,”F - . 

L’ = L + p m B G n p  

According to the method of the Lagrange multipliers, the modified Lagrangian density 

(13) 

must be used, the multipliers being the components of the constant tensor pop. A 
simple calculation shows that the constraint (12) does not contribute to the Euler- 
Lagrange equations, which happen to be 

a,Fu@a,.$ = o a,FuPap4’  = 0 (14) 

a,Mn@ape = o a,M“@a,s .  = o (15) 

the consequence being that, if the Cauchy data (4, a&, B,aoS) at t = 0 verify the 
constraint (12), it will be maintained for all t > 0. It follows then that both Fna and 
M n p  satisfy the Maxwell equations in vacuum. In fact, the first pair for both tensors 

,ap-16a B F -16-  - 0  coP76a p M ,,=o (16) 

holds authomatically for any solution (6, e), because of the definitions (8) and (9). 
On the other hand, as F,,, and M,, are dual to each other, it follows from (12) and 
(16) that 

a, F o p  = 0 a , M n p = O  p = O , 1 , 2 , 3  ,... 

which is the second Maxwell pair for the two tensors. In other words, if 4 and 0 obey 
the Euler-Lagrange equations (14) and (15), then Fap and Moa, as defined by (8) 
and (9), vet@ the Marwell ones and are, therefore, electromagnetic fields of the standard 
theov, provided that they are dual to each other at time t = 0. The reason is that 
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the Maxwell equations in vacuum have the property that, if two dual antisymmetric 
tensors verify the first pair, they also verify the second. 

However, a warning is necessary. It is clear from definitions (8) and (9) that the 
electromagnetic fields verify in this model the condition E . B = 0 ,  i.e. the electric 
and the magnetic fields are orthogonal to each other. In other words, the topological 
structure which is used to build this model contains only a subset of the solutions 
of the Maxwell equations in vacuum. This limits the scope of the model, although 
it includes two very important cases: free radiation fields and the Lienard-Wiechert 
potential for a charge, which will be treated in sections 4 and 6. This question can 
be posed in the following way. According to the Darboux theorem (Godbillon 1969, 
Choquet-Bruhat er a1 1982) the Faraday form can always be written as 

F = dq, A dp’ + dq, A dp2 (18) 

where q k ,  pk are four functions in spacetime. Note that each one of the two terms 
in (18) verifies the condition E .  B = 0 ,  although this is not the case of their sum. 
However, this representation is not unique, since we can make canonical transforma- 
tions to new variables q k , p k  -+ Q k ,  Pk without changing the functional form of (18) 
(Goldstein 1980, Misner er a1 1973). In physical terms, this can be understood in the 
following way. Tike an electromagnetic field with Poynting vector S = E x B .  By a 
suitable Lorentz transformation (with direction n and velocity parameter 11 given by 
n t anh  2 q  = 2E x B / (  E’ + Bz) )  (Misner el a1 1973), we can change to a frame 
in which S = 0 at any prescribed point P, which means that E and B are there 
parallel. Thking their common direction as the Or-axis, the Faraday form can be 
‘written as in (18) 

F = d t A d ( E r ) + d ( B z ) A y  (19) 

(because F is closed). In general, the Faraday 2-form (18) cannot be expressed 
in a simpler manner, because it is of rank four and also of class four (i.e. four 1- 
forms and four functions are needed to express it, respectively). However, there are 
important cases in which a simpler representation is possible, as happens for instance 
for radiation fields in which E and B are orthogonal. If this is so, the Faraday form 
is degenerate, of only rank two and class two, since it can be written by using only 
two functions p ( ~ , t ) ,  q ( r , t )  and two 1-forms d p , d q  as 

7 = dq A d p .  (20) 

It is then said that the field is singular because, as det(F,,,) = ( E . B ) ’ ,  the matrix of 
the electromagnetic tensor is singular (notice that this means that it has no inverse, not 
that their componem have singularities as functions in the spacetime). Singular fields 
are very important, since they include free radiation fields, the Lienard-Wlechert 
potentials for one particle and the pure electric or pure magnetic fields. In its present 
form, this model applies only to singular fields. It is easy to understand why, just by 
looking at the area 2-form (1) which is our basic element, since if 4 = Sexp(i2rro) 
it can he expressed as (20) with q = - l / ( l  + S 2 ) ; p  = U; from which we see !ha? 
it is degenerate. To avoid the confusion which the term singular might bring, we will 
speak instead of radiation fields. 

It is important to emphasize, furthermore, that the topological structure on which 
this model is based contains only radiation fields of a very special kind since they all 
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can be deduced from scalars according to equations (8)-(9), a very special properly. 
They are thus a subset of the set of the solutions of the Maxwell equations in vacuum. 
We will say that they are the admissible fields. However, as will be shown in the rest 
of this section and in the next, they have other curious properties which justify their 
detailed study. 

” 1 ._ 1~ . -. Thp ._ Cauchy __I_. . /inlo 

The Cauchy data, (+ ( r ,O) ,a ,~ ( r ,O) ,B(r ,O) ,  a , B ( T , O ) ) ,  must be characterized. As 
was shown earlier, if they verify the duality condition (U), the solution satisfies it 
for any time 1 > 0. In this case, both the Cauchy data and the corresponding 
solutions will be admissible. This poses the problem of establishing whether there 
are admissible data and solutions, although the answer is quickly seen to be positive, 
because the duality condition can be understood as a set of six real partial differential 
equations for eight real functions (the real and imaginary parts of the Cauchy data). 
This is indeed the case, as shown in the following. 

If the three vectors associated with the tensor f,,( x) deduced from a scalar x 
through (8) and (9) are written 

(2ij - zi;ixj = fOiJx) fi. I ; , d j d x j  

the duality condition (12) takes the form 

E ( + )  = -a(e) a(+) = & ( e ) .  (22) 

As the vectors E and B are orthogonal, the level curves of B and + must also be 
orthogonal. This can be written as 

(vf x v+) . (ve* x ve) = o (23) 

which is a real partial differential equation €or the two complex functions 6 and 0 
and has an infinity of solutions. Each one gives a couple +(r ,O)  B(r,O). The time 
derivatives a,+(r,O), a,B(r,O) are then fixed by the duality condition (22). Tb see 
it, note that a(@) is a linear combination of V@ and V6, such as 

a(@) = b V q  f b’V+. (24) 

The function b(r,O) is determined by +(r,O) and O(r,O),  since 

so that a0+ = 27rib(~,O)(1 + T+);, an analogous expression holding for a&’. 
Consequently, the Cauchy data consist of a pair of complex functions +(r ,  0) .  B ( r , O )  
which verify condition (23), so that the system has two degrees of freedom with a 
differential constraint. 



Topological electromagnetism 1629 

3.2. A hidden nonlinearity 

We have here a structure with two levels. At the deeper one, it is nonlinear since the 
scalars 4 and 0 obey nonlinear equations. However the transformation T given by 
(8) and (9) 

T :  4 + F,, = fFV(+j  0 + M,,  = f , , , (s)  ( 2 4  

changes these equations for 4 and 0 into the linear Maxwell ones, thus linearizing 
the model. This means that the standard electromagnetic equations can be derived 
from an underlying structure which is both nonlinear and topological. There is thus 
a hidden nonlineany, shown by the fact that although the fields E and E obey the 
linear Maxwell equations, not all its solutions are admissible, since they must verify 
the condition that the magnetic helicity be an integer number, 

hmag = ks A .  B d 3 r  = n 

where A is the vector potential. This is a topological quantum condition which do 
not allow new solutions to be obtained just by multiplying by any real number. 

This curious situation is due to the fact that the transformation T of equation (26) 
is not invertible, because for the non-admissible solutions of the Maxwell equations 
FWy, T 1 ( F P u j  or T - ' ( M g U )  are not defined, as explained earlier. This might 
seem disastrous, but as will be shown in the next section, the difference with Maxwell 
theory is only global because all the standard solutions are locally admissible, except 
in a zero measure set. There is indeed a difference with the standard theory, and an 
important one for that matter, but only if one looks globally to all the space R3. 

As the set of the admissible fields is not a linear space, the sum of two of them is 
not a new one, neither is it the product of one of them by a real number. However, 
there is still some linearity which shows in the following two properties. 

Property 1. If F," is admissible, all its integer multiples nF,, are also admissible. 

It is easy to understand why. Let 4 = Sexp(i2nu) and 0 = Rexp(i2rp). It is 
then clear that nF,, and n M , ,  are admissible since 

nF,, = fp,(4("1) M,, = f,,(O(n)) 

where 
n is an integer. 

Property 2. If FPy is admissible and its scalars 4 and 0 never take the values 0 or 
00, all its real multiples cF,, are also admissible. 

This is because, cF," and cM,!, are generated by 4(') = Sexp(c i2nv)  and = 
Rexp(ci2n0), respectively, whlch are well defined for real c. Remark that, in this 
case, 4 and 0 express maps S3 H R' x S' which form only one homotopy class. 
Notice also that the helicities vanish. 

= Sexpjniznuj  and = iiexpjniznpj, which are weii defined ii 
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3.3. A topologicnl quanlization 

As was stated earlier, all the solutions of the model verify a topological condition, 
expressed by (27), where n is the Hopf index of the map 4. As long as we remain in 
the vacuum, there is a second index since, for the same reasons, the electric helicity 
is quantized 

he, = Ls C . E d3r = m 

where V x C = E. This implies that the electromagnetic fields of this model can be 
classified in homotopy classes, each one characterized by two integer numbers n,  m. 
As a consequence and although it is classical in the sense that it only uses c-number 
fields, this model verifies a quantum condition and has a quantum-like character. 
Notice that we are using natural units, but, should we prefer to use physical ones, an 
action constant a should be needed because of dimensional reasons, since othenuise 
the Lagrangian density would not have the right dimensions (it would be the inverse 
of a length to the fourth power). In the definition of the tensors F,, and M,,  the 
factor fi should be introduced (since the non-natural dimensions of E and B are 
the square root of action divided by square of length), the form of the topological 
quantization being then 

L , A . B d 3 r = n a  Ls C . E d 3 r  = m a  (29) 

since, similar to the Planck factor h, a is an action constant, this certainly reminds us 
of the quantization conditions of the old quantum theory 

or the properly of quantum variables with a discrete spectrum which verify A& = 
ukh&. This suggests that models of this kind might help us gain a better under- 
standing of quantization. 

4. The standard electromagnetic fields are locally admissible 

A standard electromagnetic field is admissible if it can be deduced from scalars 4,B, 
according to (8)-(9), which is not always the case. However, as will be shown in 
this section, all the standard electromagnetic fields F,, are locally admissible, except 
perhaps in a set of points of zero measure. ?b be specific, this means that the domain 
D where any solution of the Maxwell equations F," is defined is the union of p open 
subsets Dj plus a zero measure set C and in each D j  there are defined scalars 4j, Bj, 
so that 

according to (8)-(9). In other words, this model and Maxwell standard theory (plus 
the condition E. B = 0) are equivalent from the local point of view. Moreover, F,,, 
can be constructed by patching together the admissible fields defined in Dj. 
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Let D be a region in threespace, either bounded or not, in which two diver- 
genceless orthogonal vector fields E ( r )  and B(+)  are defined. If B is admissible, 
there is a scalar + ( r )  so that 

E is admissible if it can be expressed in a similar way with a scalar e(+). If 9 = 
Sexp( i2xa ) ,  F j k  can be written as 

from which 

A similar equation holds for E. 
It is known that any divergenceless vector field can be expressed in terms of the 

so-called Clebsch variables X(r )  and p ( r )  (Lamb 1932, Kuznetsov and Mikhailov 
1980) as 

B = V X x V p  

A = XVp + Vc 
(35) 

(36) 

where the s%?!rr si?t$fie. the PnksD!! cqL!atb!! 

A( = -V . ( XVp). (37) 

However, it should be pointed out that X and p are not uniquely defined, many dif- 
ferent elections being possible for them. They are two first integrals of the dynamical 
system 

Both VX and V p  are single-valued. If X and p are also single-valued functions, 
(38) is integrable and the magnetic lines, which coincide with its trajectories, are the 

space R3 and are called accordingly magnetic surfaces. In this case, these lines are 
not linked and the magnetic helicity vanishes (Kuznetsov and Mikhailov 1980). But, 
for the system (38) to be integrable and for magnetic surfaces to exist, it is enough 
that one of them, say A, be an isolating integral so that the surface X ( r )  = constant 
had only a finite number of branches, because the system operates in these branches 
and there is no chaos in two-dimensional manifolds. But, if the other variable p 
is multiple-valued, the magnetic helicity may be non-zero because Of a non-trivial 
topology of the linked magnetic lines, even if there are still magnetic surfaces. To 
understand this question, take the case in which B .n = 0 in the border aD,  n being 
a unit vector normal to this border (Radada 1992). If p is single-valued, the helicily 

__....__II.._ intersectinns nf _ _  the .___ riirfarm - __ _-___ A!?) = anstan! and p ! ~ )  = mngtant which foliate !h$ 
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(6) can be written, after integration by parts and application of the Gauss theorem, 
as 

which vanishes because of the boundaly condition, equation (7) implying then that 
the linking number of the B-lines must be zero. However, if p is multiple-valued, 
the argument fails since the Gauss theorem cannot be applied. 

Let us consider this problem more closely. If p is multiple-valued, there will be 
some curves ci in R3 around which it will jump a certain amount V p . d r  = yi # 0, 
this integral being extended along a path which contours ci. If V p  is to be single- 
valued, this jump must be constant along the curve. The function p ( r )  will be 
isolating if and only if any pair (yi,yj) is conmensurable, this being equivalent to 
the statement that a real number q exists such that all the jumps of p' = qp are 
integer numbers; in that case, the branches of W'(r) = constant do  not densely cover 
any region of the space. Since we can take as Clebsch variables the couple ( X / q ,  qp), 
if B is the vector field of an integrable dynamical system, there is a choice of Clebsch 
variables such that exp(2?rip(r)) is a single-valued function 

It is clear from the previous considerations that B is admissible if there are 
functions S ( r )  and u(r)  verifying 

~- - A  C r = p  
1 

1 + s2 (39) 

If B is integrable in a region D, U = p is a good solution, since 2?rp has the 
necessary properties to be the phase of a well defined complex field. On the other 
hand, a function S ( r )  which satisfies (39) exists only if 0 < X < 1. Now let C be the 
surface in which either X = cc or p = w. In general, D - C will have p connected 
open componem D j .  Let D; c D j  be open subsets in which X and p are bounded. 
In each one of them we define A(+) = sup(X(z))  and A(-)  = inf(X(z)) when 
I E D; (subscripts j are omitted here to simplify the notation). The couple 

is a good choice of the Clebsch variables of B for any integer n in 0;. If, fur- 
thermore, n > A(+) - A(-), then 0 < A' < l , so that equations (39) have the 
solution 

s = g  U = pr (41) 

which implies that in any D; c D j  c D - C, the field can be generated through (32) 
from the scalar 

It should be emphasized that the volume of D - U D ;  may be made as small as 
desired. All this means that the field B ( r )  can be obtained by patching together 
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fields B,(r ) ,  each one defined in the corresponding D;, except for a gap D- UD; 
which is as small as required. A similar property holds for the electric field. As a 
consequence, it can be said that any standard field coincides locally with an admissible 
field, except in the zero measure set E. But it must be stressed that a smooth Scalar 
4 (even of class Cl) which generates B(r) in all D does not exist in general. 

Now let us consider an electromagnetic field in a vacuum domain D, correspond- 
ing to the orthogonal divergenceless Cauchy data E = E ( r ) ,  B = B ( r ) ,  at t h e  
t = t,. If B is admissible, there exist two functions L ~ ( T ) ,  P(r)  such that, by defining 
the time derivative of the Clebsch variables as 

aox = -a Bop = P (43) 

the electromagnetic tensor has the expression 

F~~ = -a,xa,p t a,xa,p (44) 

so that 

B = vx x v p  E = -aoxvp + aopvx. (45) 

The proof is simple. As E .  B = 0, E is a linear combination 0rVp + OVA,  so that 
it suffices to define the time derivative of the Clebsch variables as in (43). Notice 
that those of the modulus and phase of the scalar 4 are 

In other words: given any regular standard solution of Maxwell equations F,,”(z) 
at any time to, it is locally equal to an admissible one, except perhaps at a zero 
measure set. ’lb be more precise, we have proved the following proposition. 

Proposition. Let a regular electromagnetic field F (z) be given in a region D 
at a time to, with the property E .  B = 0. Then either it is admissible in D or 
D=UD,UE t h e p D ,  beingdisjointopensubregionsic= I ,  . . . ,p ,  DinDj = @ i f  
i # j ,  and C being the union of their common borders, so that Fpv(z) is admissible 
in each D ,  in the following sense: Given any E > 0, there exist regions 0; c D ,  
with the properties: 

+ Y 

(i) The volume of D - UD; is smaller than E. 

(ii) There are 2 p  scalars @,Ob, k = 1 , .  . . , p ,  each pair generating Fpu(z) in the 
corresponding D,, 

F,,y(zc) = f,,,(&) M , , , ( z )  = f,,,(O,) in 4. 
The meaning of this statement is that any standard electromagnetic field in a 

domain D can be constructed by patching together several admissible fields, each one 
defined in a subdomain D,. This implies that, from the local point of view, there 
is no difference between this model and the standard Maxwell theory for radiation 
fields, except perhaps in a zero measure set. There is indeed a difference, and it is an 
important one, but it refers to the global aspects of the solutions and is manifested in 
the topological structure, as in the existence of a topological constant of the motion. 
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As a first example, let us consider the plane wave 

E = wE,(O,sinw(x - t),O) B = wE,(O,O,sinw(z -1)) (47) 

which propagates along the Oz-axis. A choice for the Clebsch variables of B is 

X = E,(1 - cosw(z  - t ) )  fi  = y. (4) 

If n’ > 2 Eo, the scalar 

n’ - E, (1 - cos w( x - 1)) 
exp(2ian’y) E, (1 - cosw(2 - t ) )  (49) 

generates B ( r ,  t ) ,  according to (8). It is easy to see that the scalar 0 which generates 
E ( r ,  t )  through (9) has the same modulus as 4, the phase being instead 2ian’z. As 
we see, (47) is not an admissible field since 4 and 0 do not represent smooth maps 
S3 - S2 because they are not well defined at infinity. However, there are admissible 
fields which coincide with it in any bounded domain. Or, in other words, it is a local 
but not a global solution in this model. 

Another example is the standing wave with A, given by 

A, = 0 
A, = A,, sin k,x cos k,y sin k,z cos wt 

A, = A,, cos k,x sin k,y sin k,z cos wt 

A, = Ao,sin k,x sin k,y cos k,z coswt (50) 

with w2 = kiki, which verifies the condition E .  B = 0. A simple calculation shows 
that a choice for the Clebsch variables of B is 

X = 1 + s i n  k,x sin k,y sin k,z 
I _  A . ~  A . -  A . .  

p =  ‘ l o g l s i n k , x I + ~ l o g ) s i n k , y l +  B l o g I s i n k , z l .  (51) 
kl k, k3 

Accordingly, the magnetic field can be generated by the scalar 

except in the planes k,x = nln, k,y = n,a, k,z = n,~, the ni being integers, 
where fi  diverges. This means that there are scalars q5n,n,n, defined and smooth in 
thefinitedomainsn,a < k,x < (n ,+ l ) a ,  n2a < k,y < ( n , + l ) n ,  n3a < k,z < 
(n,+ 1)n which generate the magnetic field in each one of them. However, it cannot 
be produced by a smooth map S3 - S2,  because of the singularities of U.  A similar 
result holds for E. Looking from the local point of view, this electromagnetic wave 
coincides with an admissible field around any point, except in a set of zero measure. 
However, there is no admissible field which coincides with it throughout all the space 
R3. 
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5. Quantization of the helicity 

The term helicdy can be used in (at least) two different contexts. First, as in this 
work up to now, it characterizes the topology of the integral lies of a divergenceless 
field, be it a magnetic or electric field or the vorticity of a fluid. In our case there is 
a magnetic and an electric helicity, hmag, he, defined by (27) and (28) as 

h,,, = l, A .  B d3r he, = L, C . E d3r. 

Second, as in elementary particle physics, where it refers to the projection of the spin 
on the direction of the motion, that is 

(53) 

Since. the photon helicity h' is quantized and all the electromagnetic fields of this 
model satisfy the topological quantum condition h,,, = n, he, = m, n,m being 
integer numbers, it is difficult avoiding the question: 1s there any relation between 
these two types of helicity, h,, and h,, on the one side and h' on the other? A 
positive answer would give a hint that the discreteness of the photon helicity could 
have a topological basis. Before answering this question, let us established whether 
there are families of solutions for which h,,, = he, = h'. 

Given any two non-trivial maps 4,8 : S3 H S2, i.e. with non-vanishing Hopf 
index, and verifying the condition (23), the corresponding electromagnetic fields has 
a non-vanishing integer magnetic helicity. An interesting example was obtained in a 
nreviniir n2ne.r r-r-. ( R ~ R a r l a  19Wa _____, 199nh). -___I 

Hopf himself proposed the map 

where r2 = z2 + y2 + z2, as an example in which the index is non-zero. Actually 
it is equal to one, which means that any two level curves of &, are linked once, as 
can be checked with the lines #+, = 0 and 4H = 00, the z-axis and the circle r = 1, 
z = 0, respectively (see figure 2). Now, let us define two fields 4,8 as 

4 ( ~ ,  Y, Z )  = &(~z, KY, ~ 2 )  @(z, Y, 2) = G(KY, K Z , K ~ )  (55) 

wheie K is any iiireije kiigih, ihe miiejpoiidiiig Whitebad VeCiOij  beiiig 

The solution of the Maxwell equations with Cauchy data at t = 0 given by (56) will 
have any pair of B-lines (or of E-lines) linked once for all time, since this propery is 
invariant under continuous evolution, so that h,,, = he, = 1. It has been called an 
elecrromagnetic knof (Rafiada 1990a, 1990b). Moreover, since its magnetic lines both 
turn around the z-axis and the circle z = 0,  r = 1 and its electric ones do the same 
around the z-axis and the circle z = 0,r = 1, the electromagnetic field can be said 
to contain a magnetic and an electric vortex, as is schematically indicated in figure 3. 
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Figure 2. A schematic representation of the Hapf map. Some level curves are shown. 

Figure 3. A schematic representation of the Cauchy data of an electromagnetic knot. 
The electric and magnetic vortexes, which correspond to 0 = m and 4 = m, respectively 
are shown. 

Although these are curious properties, it is nonetheless a standard electromagnetic 
solution of the Maxwell equations, and this must be stressed. 

We may as well generate a solution with magnetic helicity equal to  any positive 
interger n, by following the same steps, but taking the n th  power 4; instead of 
&. This can seem strange, since the level curves are the same for &as for any 
of its powers. However, note that, in the case of C", the inverse image of any 
complex number C has n determinations ;/5. This means that the degree of the 
map C, ct S2, defined in section 2, must be n. Under reflection with respect to 
a plane, the magnetic helicity changes its sign, thus giving a procedure to obtain 

The energy, momentum and angular momentum of this solution can be computed 
e!ectmmagner;r. knNS with negative he!icity: 

from the corresponding tensor densities, and their values turn out to be 

E = 2 n  p = ( O , n , O )  J = ( O , l , O ) .  (57) 

This angular momentum is in fact the spin because it is taken with respect to the 
position of the centre of energy J 77''' d3r/ J Too d3r at 1 = 0. As it is directed 
along the direction of p and is equal to one, it is clear that h' = hmaF = he, = 1. 
This electromagnetic knot is a wavepacket its centre of energy travelling along the 
y-axis with velocity p / E  = i. Its Fourier expansion can be easily obtained and is 
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equal to 

B ( r , f )  = - ( 2 R ) 3 / 2  / [ R ( k ) c o s ( k . r - w t ) + N ( k ) s i n ( k ~ r - w t ) ]  d3k 

(58) 
K 2  / [ R ' ( k ) c o s ( k . r - w t )  - R ( k ) s i n ( k . r  -wt)]d3k 

E ( r ,  t )  = - 

where the vectom R ( k )  and R'(k )  are given by 

( 2 R ) 3 / 2  

w 
k,k3 k2k3 R ( k )  = 

The vector potential can be chosen as (with A, = 0) 

R ' (k ) s in (k . r -wl ) ]d3k .  

As we see it is a wavepacket peaked at w = n , p  = (0 ,  K ,  0). By Lorena transforming 
it with velocity U along the y-axis, a family of electromagnetic knots is obtained, all 
of which have magnetic helicity equal to one. Their energy, momentum and angular 
momentum are given by (with y = l/m) 

E' =y(2 -U)K  p' = ( o , y ( l  -2U)6,0) J ' =  (O, l , o ) .  (59) 

As can be seen, the projection of the spin on the directions of the motion is still 
+l. In other words, all the electromagnetic knots of this family satisfy the equality 
hmag = he, = h', their helicity in the sense of particle physics also being + 1. Because 
of this property, they have been called quasiphotons (Raiiada l W a ,  1990b). It is easy 
to show that there are other solutions in which the helicities are -1. (Clearly, given 
a solution with magnetic or electric helicity h! the one obtained by reflection with 
respect to any plane has helicity -h.) 

The two meanings of helicity coincide for this family of solutions. Under which 
conditions does this property hold? The answer is that h,,, = fh' if the field 
verifies the following equality 

B = ~ i ( . 7 . n ) E  (60) 

where n = p / p  is the unit vector in the  direction of the linear momentum and .7 
is the generator of the rotations (i.e. the angular momentum operator). Besides, 
he, = ih' if 

E = f i ( J . n ) B .  (61) 

The proof is as follows. First note that 
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where S = E x B is the Poynting vector, or othenvise written 

h' = Ls B .  ( ( E .  n)r - (E .  r)n) d3r. (63) 

Comparing this expression with equations (27) and (28) the announced result follows. 
The electromagnetic ho ts  (58) verify 

i ( Z . n ) B  = E i ( J . n ) E  = -B. (64) 

This implies that, under a rotation of r i / 2  around the direction of p, the field changes 
according to E - -B, B -+ E. As a consequence of (64), all the solutions in this 
class verify hmag = he, = h'. There is a second class of fields (obtained from the 
previous one by reflection with respect to  a plane containing the vector p). which 
verify 

i ( J .  n ) B  = -E i ( J .  n)E = B. (65) 

all of which verify h,,, = he, = -h'. The reason is that the magnetic helicity changes 
its sign upon reflection, while the projection of the spin on the linear momentum 
remains unchanged. In fact, the following has been proved. 

Proposition. If condition (64) is satisfied, the helicities verify h,,, = he, = h'. If 
condition (65) holds, then h,, = he, = -h'. 

Furthermore, if the field can be deduced from the scalars +,0  and is therefore 
admissible, the three helicities are integer numbers. 

6. Quantization of the electric charge 

Let e ( r ,  t )  be a scalar from which the electric field can be deduced as 

In other words, the area 2-form in Sz corresponding to 0 is the electric flux 2-form 

Ei = -it.. 2 t~ k M j k .  (68) 

Until now, we have been taking complex scalar fields which are regular and have a 
limit when T 3 CO independent of the direction. With these properties, they represent 
maps R3 U {CO) 3 S3 + Sz and correspond to electromagnetic fields in vacuum, 
defined through all R3. If there is a point charge somewhere, the electromagnetic 
field is given hy the Lienard-Wiechert potentia! which has the property E .  B = 0: 
so that the Faraday 2-form is degenerate which allows this model to be applied. If 
the point charge be at ro, the electric field is singular at ro, its lines diverging at CO. 
Consequently, 0 is not defined in the sphere S3, but in S3 punctured twice, that is 
in S2 x R (note that the electric lines are its level curves). (Intuitively, R3 - { O , C O )  
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can be understood as the product of the unit sphere T = 1 times the semi-straight 
line 0 < P < CO.) It therefore represents a map 

e :  S Z ~ R - S ~ .  (69) 

These kind of maps can be classified in homotopy classes labelled by an integer 
number which is equal to the degree of the map Sa -+ Sa. It is easy to understand 
then that the topological number (the label of the classes of homotopy) is equal to 
the degree of the map from the sphere T = 1 on the complex field C, which has the 
value 

where s in  d d e  A d y  is the area 2-form in the image sphere Sa(= C). But, at the 
same time and because of (67) and (a), one has 

In other words, the electric flux through a sphere which contains the charge is ahvays 
an integer number 6. According to the Gauss theorem, this flux is 4aq ,  from which 
q = 6/4n, in the natural system of units based on the action constant of the model 
(see 3.3). In physical units, the charge q is written as 

q = 6 &/4n (72) 

which means that the electric charge is necessarily quantized, as it is always an integer 
multiple of the fundamental charge 

(73j 

The fact that there is a topological quantization of the electric charge seems encour- 
aging (RaRada 1991b). 

We may summarize the topological quantization laws of the helicities and the 
charge as 

7 , .  qo = q a / + n .  

h,,, = na he, = m a  q = 6qo = 6&/4n (74) 

where n and m are Hopf indexes of maps S3 c S2 and 6 is the degree of a map 
S2 c S2. In order to fix the scale of these quantizations, some criterion for the 
value of the constant a is required which normalizes the fields. If one takes a = h 
(the simplest choice), then hmag = nh,  he, = mh, qo = ef1.074, where e is the 
electron charge and 1.074 = 4 a / m  and if a = 1.153h, then qo = e, but the 
helicities take 'wrong' values. In any case, in the absence of any reliable criterion for 
the value of a, these numbers do not have any great significance. 
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7 .  Conclusions 

The set of the solutions of the Maxwell equations in vacuum contains a subset, called 
the admissible fields here, with a topological structure corresponding to that of the 
maps Ss c Sz, between spheres. These maps can be interpreted, by stereographic 
projection, as complex scalar fields with only one value at infinity. There is one 
admissible field for each pair of such maps + ( r , t ) ,  O ( 7 , t )  with orthogonal level 
curves. Its magnetic and electric lines, respectively, are these level curves. The set of 
the admissible fields has the following properties. 

(i) Their magnetic and electric helicities take only integer values n, m, 

where V x A = B,  V x C = E, equal to the Hopf indexes of 4 and 8. Because of 
the existence of these topological constants of the motion, the fields are classified in 
homotopy classes labelled by two integers n, m. 

(ii) As both helicities are dimensionally actions, the equations (75) have the form 
of quantum conditions. Because of them, a classical model based on the admissible 
fields, has, however, a quantum-like or prequantum character, even if it only makes 
use of c-numbers, 

(iii) Any standard radiation field (with E .  E = 0) is locally equal to an admissible 
field, except in a zero measure set, Or, in other words, it can be obtained by patching 
together admissible fields. This means that the dxerence between the set of the 
admissible fields and that of all the solutions of the Maxwell equations in vacuum is 
not local but global. 

(iv) The association of electromagentic fields to maps S3 ++ S2 offers a procedure 

the magnetic lines (or the electric lines) are linked with the desired linking number. 
A family of such knots corresponding to n = m = 1 was obtained. It turns out that 
the helicity in the sense used in particle physics, that is the projection of the spin 
on the direction of the linear momentum, is equal both to the magnetic and to the 
electric helicity and to 1. A condition for the equality of the helicities was obtained. 

(v) In the set of the admissible fields there is a mechanism for the quantization 
of the electric charge by which the flux through any closed surface which surrounds a 
charge is an integer number, equal to the degree of a map Sz c S2. This corresponds 
to the existence of a fundamental charge qo equal to f i / 4 ~ .  

A model based on the admissible fields is not completely realistic since it only 
contains fields for which the Faraday 2-form is degenerate or, equivalently, radiation 
fields with orthogonal electric and magnetic fields, so that a generalization is needed. 
This limitation will be treated in a forthcoming paper. Nevertheless, its topological 
quantum conditions and its mechanism for the quantization of the electric charge 
with the fundamental value equal to  fi/47r suggests that the topological structure 
on which it is based is worth further study and that it might offer better understanding 
of the quantization process (Raiiada 1991a). 
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